Thermionic emission from surface-terminated nanocrystalline diamond

نویسندگان

  • Vance S. Robinson
  • Greg M. Swain
  • Ronald G. Reifenberger
  • Timothy S. Fisher
چکیده

Thermionic electron emission forms the basis of both electron sources for a variety of applications and a direct energy conversion process that is compact and scalable. The present study characterizes thermionic emission from boron-doped nanocrystalline diamond films with hydrogen and nitrophenyl surface termination layers. A hemispherical energy analyzer was used to measure electron energy distributions from the emitters at elevated temperatures. Thermionic emission energy distributions, acquired at temperatures ranging from 700 to 1100°C, reveal that emission occurs from regions of differing work functions. The relative peak intensities, representing each work function, change with temperature indicating instability in the emitter's surface chemistry. Corresponding partial pressure measurements of pertinent gases present in the chamber during the experiment were collected by a residual gas analyzer and support the hypothesis of unstable surface chemistry. The lowest work functions measured for the hydrogenand nitrophenyl-terminated films were 3.95 and 3.88eV, respectively. After the initial heating cycle, the hydrogenterminated sample's surface was regenerated by exposure to hydrogen plasma. The lower work function was restored by this process, and the resulting thermionic electron energy distributions again were indicative of surface desorption. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta Radiation Enhanced Thermionic Emission from Diamond Thin Films

Diamond-based thermionic emission devices could provide a means to produce clean and renewable energy through direct heat-to-electrical energy conversion. Hindering progress of the technology are the thermionic output current and threshold temperature of the emitter cathode. In this report, we study the effects on thermionic emission caused by in situ exposure of the diamond cathode to beta rad...

متن کامل

Thermionic Emission from Diamond Films in Molecular Hydrogen Environments

Diamond-based low-work function thermionic electron emitters are in high demand for applications ranging from electron guns and space thrusters to electrical energy converters. A key requirement of such diamond-based electron sources is hydrogen termination of the surfaces which can significantly reduce the emission barrier. However, at high temperatures (≤600°C), terminated hydrogen begins to ...

متن کامل

Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e....

متن کامل

Thermionic emission from phosphorus (P) doped diamond nanocrystals supported by conical carbon nanotubes and ultraviolet photoelectron spectroscopy study of P-doped diamond films

a Department of Physics and Astronomy, University of Louisville, Louisville 40292, KY, United States b Department of Materials Science & Engineering, Iowa State University, Ames 50011, IA, United States c Department of Chemical Engineering, University of Louisville, Louisville 40292, KY, United States d Conn Center for Renewable Energy Research, University of Louisville, Louisville 40292, KY, U...

متن کامل

Field Emission Characterisation of Silicon Tip Arrays Coated with Gan and Diamond Nanoparticle Cluster

Wide band gap materials show promise for applications in coating of field emission tips. Recently nanocrystalline hexagonal GaN crystallites as small as 5 nm average diameter have been formed using reactive laser ablation of gallium metal in a nitrogenating ambient. In this paper we have investigated the performance of ungated emitter. Silicon tip arrays coated by dielectrophoresis of gallium n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007